亚洲欧美日韩国产综合第,大鸡巴操小嫩逼冒沫视频,乐播av一区二区三区免费,小泽玛利亚在线观看高清

您好!歡迎訪問上海起發(fā)實驗試劑有限公司網(wǎng)站!
全國服務(wù)咨詢熱線:

15921799099

當(dāng)前位置:首頁 > 產(chǎn)品中心 > 自產(chǎn)產(chǎn)品 > 試劑 > Phosphosolutions公司Anti-ABCA4 (Rim Protein)產(chǎn)品代理

Phosphosolutions公司Anti-ABCA4 (Rim Protein)產(chǎn)品代理

簡要描述:公司概況

背景
基因工程-- Phosphosolutions是*代可以完整描繪人體的遺傳物質(zhì)序列的企業(yè)。
蛋白質(zhì)體學(xué)項目:Phosphosolutions是第二代試圖將所有體內(nèi)蛋白質(zhì)表達(dá)出來的企業(yè)。
PhosphoSolutions公司—第三步我們將超越蛋白質(zhì)體學(xué) 進而 專注于磷蛋白質(zhì)。

our focus 專業(yè)特色
PhosphoSolutions公司專注于蛋白質(zhì)組學(xué)中的一個(10-20

  • 產(chǎn)品型號:
  • 廠商性質(zhì):經(jīng)銷商
  • 更新時間:2025-06-01
  • 訪  問  量:2443

詳細(xì)介紹

 Antibodies 抗體

特異性磷抗體:Detection and quantitation of changes in the state of phosphorylation of specific proteins is of great utility in the quest to establish the function of a given protein and the consequences of its reversible phosphorylation. Two methods commonly used to measure protein phosphorylation and dephosphorylation in cell preparations employ prelabeling with 32Pi or back phosphorylation. These methods continue to be very effective and have advantages for many test systems, but they do have several practical and theoretical limitations (Nestler and Greengard, 1984). Based in large part on the successful use of short synthetic peptides to produce epitope-targeted antibodies (Lerner, 1982;Sutcliffe et al., 1983), an immunochemical approach became an attractive alternative for detecting changes in the state of phosphorylation of specific proteins at a specific site. The use of phosphorylation state-specific antibodies takes advantage of the sensitivity and selectivity afforded by immunochemical methodology, combined with relatively simple preparation and potentially broad applications.

The first report of phosphorylation-dependent antibodies appeared in 1981, when polyclonal antibodies that could detect phosphotyrosine-containing proteins were produced by immunization with benzyl phosphonate conjugated to keyhole limpet hemocyanin (KLH) (Ross et al., 1981). Shortly thereafter, Nairn and colleagues reported the production of serum antibodies that distinguished between the phospho- and dephospho-forms of G-substrate, a protein localized to cerebellar Purkinje cells and phosphorylated by cGMP-dependent protein kinase (Nairn et al., 1982). A synthetic heptapeptide, Arg-Lys-Asp-Thr-Pro-Ala-Leu, corresponding to a repeated sequence surrounding two phosphorylated threonyl residues in the intact protein, served as antigen. Rabbit antisera against a peptide-KLH conjugate were specific for the dephospho-form of G-substrate. Phospho-specific antibodies were prepared by immunization of rabbits with the purified phosphoprotein, phosphorylated in vitro to a stoichiometry of 2 mol/mol with cGMP-dependent protein kinase. Despite this initial success, other attempts in our laboratory to produce phospho-specific polyclonal antisera by immunization with the phospho-form of intact proteins were not very successful, probably because of two significant factors. First, many phosphorylated proteins are believed to undergo rapid dephosphorylation during immunization, regardless of the route of injection, leading to the loss of the desired phospho-epitope. Second, holoproteins generally contain multiple immunogenic epitopes; this decreases the probability that colonal dominance for a phospho-specific epitope will be obtained.

Taking a more direct approach utilizing phosphorylated and unphosphorylated forms of synthetic phosphopeptides, we developed a general protocol for the production of phosphorylation state-specific antibodies for substrates with established site(s) of phosphorylation (Czernik et al., 1991)). In early stages of our development of this methodology, phosphopeptides were routinely prepared by enzymatic phosphorylation (Czernik et al., 1991). Although this approach remains perfectly valid today, the preparation of synthetic phosphopeptides using Fmoc derivatives of phosphoamino acids has become the state-of-the-art (Czernik et al., 1995;Czernik et al., 1996). Likewise, we have examined the use of both polyclonal and monoclonal techniques for antibody production. Given the high success rate that we and others have obtained with the polyclonal technique, it has become the method of choice, because it is an easier and less costly method for the average laboratory. However, when appropriate, this approach can be readily adapted for monoclonal antibody production.

參考文獻

1. Czernik AJ, Girault J-A, Nairn AC, Chen J, Snyder G, Kebabian J, Greengard P (1991) Production of phosphorylation state-specific antibodies. Methods Enzymol 201: 264-283.

2. Czernik AJ, Mathers J, Mische SM (1997) Phosphorylation state-specific antibodies. Neuromethods: Regulatory Protein Modification: Techniques & Protocols 30: 219-250.

3. Czernik AJ, Mathers J, Tsou K, Greengard P, Mische SM (1995) Phosphorylation state-specific antibodies: preparation and applications. Neuroprotocols 6: 56-61.

4. Lerner, R. A. Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299, 593-596. 1982.

5. Nairn AC, Detre JA, Casnellie JE, Greengard P (1982) Serum antibodies that distinguish between the phospho- and dephospho-forms of a phosphoprotein. Nature (Lond ) 299: 734-736.

6. Nestler, E. J. and Greengard, P. Protein Phosphorylation in the Nervous System. Nestler and Greengard. Protein Phosphorylation in the Nervous System. [8], 255-299. 1984. New York, Wiley. 

8. Sutcliffe JG, Shinnick TM, Green N, Lerner RA (1983) Antibodies that react with predetermined sites on proteins. Science 219: 660-666.

主營產(chǎn)品清單如下:

Item: Anti-ABCA4 (Rim Protein)
Category:  
Sub-Category:  
SKU/Catalog Number: 115-ABCA4
Datasheet:  click to view

 

SKU Price Formulation Applications Amount Qty
115-ABCA4 $325.00 Affinity purified, monoclonal antibody WB, IHC 100 µl

 

產(chǎn)品咨詢

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7
上海起發(fā)實驗試劑有限公司
地址:上海浦東川沙鎮(zhèn)川沙路6619號上海起發(fā)實驗試劑有限公司
郵箱:xs1@78bio.com
傳真:021-50724961
關(guān)注我們
歡迎您關(guān)注我們的微信公眾號了解更多信息:
歡迎您關(guān)注我們的微信公眾號
了解更多信息
亚洲av无码一区二区乱子伦as| 成人做爰视频www| 你懂得亚洲社区午夜福利| 久久人人妻人人爽人人爽| 日本丰满熟妇被捏出奶水| 91视频天天操| 小骚逼挨大屌狠劲操视频| 艹逼啊啊啊2acfun| 超碰caopeng在线| 日韩性爱视频网| 我把护士日出水了视频90分钟| 亚洲 欧美 在线 一区| 亚洲欧洲中文字幕日韩天堂| 大香蕉日韩大香蕉视频9| 东京热高清先锋影音av| 中国浓毛小处女肏屄视频| 色国产精品一区在线观看| 大鸡巴狂插骚逼黑丝熟女| WWW无套内射高清免费| 欧美日韩一区二区综合视频| 日韩一区二区三区综合在线| 用我的手指搅乱| 欧美老肥女BB| 69aaaaa网站视频| 少妇的肉体k8经典| 黄色两个美女A级爽AA| 中文在线中文资源| 嗯嗯啊啊大鸡吧日逼视频| 囯产精品久久久久久久久| 国产av无码专区亚洲av毛网站| 亚洲天堂日韩欧美在线播放| 日本XXXX视频免费看| 久久久久国产精品熟女蜜臀| 久久久久久久久久久这里| AA级女人大片喷水免费| 777精品福利视频导航| 国产最新在线天天视频 | 成年美女黄网站| 小穴被操到流水在线观看| xxxx乌克兰高潮喷水| 少妇激情aⅴ一区二区三区|